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ABSTRACT 

The volumetric flow rate in a duct is commonly calculated based on the arithmetic average of an array of point velocity measurements across the flow. Various 

traverse patterns, such as the Equal Area, Log-Linear and Log-Tchebycheff rules, are defined for round and rectangular ducts in ASHRAE and ISO 

standards. While many studies on the accuracy of these rules have been published, there is little discussion on the reasons for this accuracy, i.e., the 

assumptions (if any) about the underlying velocity profile. Such knowledge would be useful to engineers involved in ventilation system testing and 

commissioning, particularly where some compromise is necessary, e.g., for non-ideal traverse locations or duct cross-sections. This paper explains how the 

three rules are derived, reveals their underlying assumptions, and suggests some ideas for further research. 

INTRODUCTION 

One method for determining the volumetric flow rate in a conduit is to measure the streamwise velocity at an 

array of points across the flow and multiply their average by the cross-sectional area. Three standard rules for 

determining the measurement point coordinates are recommended in current ASHRAE and ISO standards – the Equal 

Area, Log-Linear and Log-Tchebycheff rules (e.g., ISO 2008, ISO 2020, ASHRAE 2021). These rules have been shown 

to be acceptably accurate in many practical situations (Winternitz and Fischl 1957, Kinghorn and McHugh 1977, 

Hickman 2015). However, a possible weakness in the standards is the lack of explanation for why these rules work so 

well, and why they are recommended for some situations and not others. For example: 

1. Why does ASHRAE 111 (ASHRAE, 2017) define the Equal Area rule for a rectangular duct but not for 

a circular duct? 

2. Why do the ASHRAE and ISO standards present an (unweighted) log-linear rule for round ducts but 

not for rectangular ducts? 

3. Why are the Log-Linear and Log-T coordinates defined with such precision? 

4. To what extent can adjustments be tolerated (to individual points or to the traverse location)?  

5. Which rule is most economical (i.e., most accurate for a given number of measurements) for a particular 

duct geometry and flow condition?  

A first step towards addressing such questions, and the subject of this paper, is to determine how the coordinates 

© 2024 ASHRAE. Published in ASHRAE Transactions, Volume 130, Part 1. Reprinted by permission at www.coanda.ca. This article may not 
be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information, visit www.ashrae.org. 



 

 

for each rule are calculated. Thus, the underlying assumptions about the velocity profile (if any) are revealed, some 

implications for flow measurement are highlighted, and a foundation is laid for further study. 

EQUAL AREA RULE 

Round Duct Traverse 

In the Equal Area rule for a round duct, the cross-section is subdivided into multiple rings and a central circle, 

all of equal area (Ower & Pankhurst 1977). Velocity is measured at concentric circles which bisect each ring into two 

sub-rings of equal area. While no assumption is made regarding the velocity profile, the measurement resolution 

increases towards the wall. Hence this method may be particularly effective for fully developed flows with a large 

boundary layer region (i.e., laminar or low Reynolds number).  

Rectangular Duct Traverse 

In a traverse across a rectangular duct, the duct width or height is subdivided into intervals of equal width, and 

velocity is measured at the midpoint of each interval (ASHRAE 2017). Again, no assumption is made regarding the 

velocity profile.  

Conflicting conclusions regarding the accuracy of this method (relative to the Log-Tchebycheff rule) have been 

reported in the literature (e.g., McFerran 1999, Klaassen & House 2001, Zhou 2005, Hickman 2015). The insight into 

the Log-T rule provided in this paper will enable comparison on a more fundamental, mathematical basis in future work. 

LOG-LINEAR RULE  

Round Duct Traverse 

The Log-Linear rule was originally derived by Winternitz & Fischl (1957) for a round duct only. It is based on 

the logarithmic law of the wall, but with an additional linear term (which influences the slope of the velocity profile 

away from the wall). The following derivation is simpler than the original approach due to the choice of coordinate 

system.  

Traverse With an Even Number of Points. For an even number of points, the pipe is subdivided into 𝑛 = 𝑗/2 

concentric regions of equal area, as shown in Figure 1a. Within each region 𝑚, two velocity measurement points 𝜌𝑚1 

and 𝜌𝑚2 are identified such that their area-based average is equal to the area-based average of the log-linear function, 
 

𝑓(𝜌) = 𝐶1 + 𝐶2ln(1 − 𝜌) + 𝐶3(1 − 𝜌) 
(1) 

where 𝜌 = 𝑟/𝑅 is the non-dimensional radial position (measured from the axis), 𝑅 is the pipe radius and 𝐶1, 𝐶2 and 𝐶3 

are arbitrary coefficients. By choosing convenient values for these coefficients, a set of simultaneous equations for 𝜌𝑚1 

and 𝜌𝑚2 can be constructed, as shown in Equation 2. The resulting values of 𝜌𝑚1 and 𝜌𝑚2 then remain valid for any 

values of 𝐶1, 𝐶2 and 𝐶3.  



  

(a) (b) 

Figure 1 (a) Illustration of the Log-Linear rule applied to a round duct, with an even number of points per radius (𝑗 = 4), 
as described in Equation 7. (b) Illustration of the effects of the coefficients 𝐶1, 𝐶2 and 𝐶3 on Equation 1. 

 

 
 

𝐶1 = 𝐶3 = 0; 𝐶2 = 1:     ∫ ln(1 − 𝜌) 2𝜋𝜌 d𝜌
√

𝑚
𝑛

√𝑚−1
𝑛

=  
1

2
[ln(1 − 𝜌𝑚1) + ln(1 − 𝜌𝑚2)] ⋅

𝜋 12

𝑛
 (2a) 

 

𝐶1 = 𝐶2 = 0; 𝐶3 = 1:          ∫ (1 − 𝜌) 2𝜋𝜌 dρ
√

𝑚
𝑛

√𝑚−1
𝑛

=  
1

2
[(1 − 𝜌𝑚1) + (1 − 𝜌𝑚2)] ⋅

𝜋 12

𝑛
 (2b) 

Equations 2a and 2b are solved following the approach of Winternitz and Fischl (1957), where the intermediate variables 

𝑎𝑚 and 𝑏𝑚 are introduced to define the following set of simultaneous equations: 

 
1

2
[ln(1 − 𝜌𝑚1) + ln(1 − 𝜌𝑚2)] = ln 𝑏𝑚 (3a) 

 1

2
[(1 − 𝜌𝑚1) + (1 − 𝜌𝑚2)] = 𝑎𝑚 (3b) 

These can be rearranged as 
 

(1 − 𝜌𝑚1)(1 − 𝜌𝑚2) = 𝑏𝑚
2  (4a) 

 
(1 − 𝜌𝑚1) + (1 − 𝜌𝑚2) = 2𝑎𝑚 (4b) 

which are recognizable as the product and sum of roots of the quadratic equation (1 − 𝜌)2 − 2𝑎𝑚(1 − 𝜌) + 𝑏𝑚
2 = 0. 

Thus, the standard solution for a quadratic equation can be used to obtain separate expressions for 𝜌𝑚1 and 𝜌𝑚2 (note 

the ± sign): 

 𝜌𝑚 = 1 − (𝑎𝑚 ± √𝑎𝑚
2 − 𝑏𝑚

2 ) (5) 

Separately, the values of 𝑎𝑚 and 𝑏𝑚 can be calculated by combining Equations 2 and 3 (note that 𝜋 cancels out): 

 ln 𝑏𝑚 = 𝑛 ∫ ln(1 − 𝜌) 2𝜌 d𝜌
√

𝑚
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√𝑚−1
𝑛

 (6a) 



 

 

 𝑎𝑚 = 𝑛 ∫ (1 − 𝜌) 2𝜌 dρ
√

𝑚
𝑛

√𝑚−1
𝑛

 (6b) 

and substituting the results into Equation 5. There are two solutions to Equation 5 (note the ± sign): 

𝜌𝑚 = 1 − 𝑛 (
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3

3
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− exp [ 2𝑛 (−𝜌1
2 ln(1 − 𝜌1) +

𝜌1
2

2
 + 𝜌1 + 𝜌2

2ln(1 − 𝜌2) −
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2

2
 − 𝜌2  +  ln(|𝜌1  −  1|) −  ln(|𝜌2  −  1|))]}

1
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(7) 

where 𝜌1 = √(𝑚 − 1)/𝑛 and 𝜌2 = √𝑚/𝑛  are the boundaries of the 𝑚th interval, i.e. the limits of integration in 

Equation 2. In the outer ring, where 𝑚 = 𝑛, Equation 2a becomes an imperfect integral with a vertical asymptote at the 

wall, and hence the upper limit becomes 𝜌 → 1. To solve Equation 7 in the outer ring, the upper limit can be set to 

𝜌2 = 1 − 𝜖, where 𝜖 is a very small number (e.g., 10−6)*. 

The full series of radial measurement points can be expressed in terms of wall distance non-dimensionalized by 

duct diameter using the transformation 𝑦𝑖/𝐷 = (1 − 𝜌𝑖)/2.  

Traverse With an Odd Number of Points. If the number of points per radius 𝑗 is odd, the cross-section is subdivided 

into 𝑛 = (𝑗 + 1)/2 concentric regions. The outer, wall-adjacent region has half the area of the other regions 

(𝐴outer =  𝐴/𝑗), and velocity is measured at the point, 𝜌outer, where it equals the mean of a logarithmic velocity profile, 

𝑓(𝜌) =  𝐶1 +  𝐶2 ln(1 − 𝜌). Setting 𝐶1 =  0 and 𝐶2 = 1 yields the equation 

 ∫ ln(1 − 𝜌) 2𝜋𝜌 d𝜌
1

√1−
1
𝑗

= ln(1 − 𝜌outer) ⋅
𝜋

𝑗
 (8) 

The solution to Equation 8 is  

𝜌outer = 1 − exp [𝑗√1 −
1

𝑗
− (1 −

1

𝑗
) ln (1 − √1 −

1

𝑗
) + ln (|√1 −

1

𝑗
− 1|) − 1 −

1

2𝑗
] (9) 

While the coefficients in Equation 8 have been set to 𝐶1 =  0 and 𝐶2 = 1, the resulting value of 𝜌outer remains valid for 

all values of 𝐶1 and 𝐶2.  

For the core region, Equation 2 is used, but the integration limits on the left-hand side are set to 

𝜌1 =  √2(𝑚 − 1)/(2𝑛 − 1) and 𝜌2 = √2𝑚/(2𝑛 − 1), and on the right-hand side the area of each ring is changed to 

2𝜋 12/(2𝑛 − 1). The points 𝜌𝑚1 and 𝜌𝑚2 are then calculated as (note the ± sign): 

𝜌𝑚 = 1 − (𝑛 −
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(10) 

 

 
* Note that when solving Equations 7 and 10 in the spreadsheet software Microsoft Excel, brackets must be used to override the default 

order of operations, where negation (-) incorrectly takes precedence over exponentiation (^). 



Rectangular Duct Traverse 

A log-linear rule can be derived for a traverse across a rectangular duct by recasting Equation 1 in terms of the 

duct half-width, 𝑆,  
 

𝑓 (
𝑥

𝑆
) = 𝐶1 + 𝐶2ln (

𝑥

𝑆
) + 𝐶3 (

𝑥

𝑆
) 

(1b) 

and following the procedure outlined above (with the integrals in Equations 2, 6 and 8 adjusted appropriately). This 

method would be more general than the rectangular log-linear rule defined in ISO 3966 (ISO 2020), which relies on a 

weighted average of exactly 26 point measurements (Miles et al 1966, Ower and Pankhurst 1977), and thus may merit 

further investigation.  

Discussion 

The Log-Linear rule should be accurate for any velocity profile which has the form of Equation 1. The coefficients 𝐶1, 

𝐶2 and 𝐶3 can have any value, and their effects on the velocity profile are illustrated in Figure 1b. The constant term 𝐶1 

shifts the whole profile vertically, the coefficient 𝐶2 varies the curvature of the profile at the wall and the coefficient 𝐶3 

influences the slope in the core region. Furthermore, these coefficients need not be constant for all 𝑛 intervals across 

the profile, i.e., the assumed profile is piecewise log-linear. For example, Winternitz & Fischl (1957) observed very good 

agreement for a range of asymmetric velocity profiles. 

LOG-TCHEBYCHEFF RULE 

In the Log-Tchebycheff rule, the duct cross-section is subdivided into an outer region, where the velocity is 

represented by a logarithmic function, and a core region, where a polynomial function is assumed. The measurement 

locations are distributed unequally (as described below) such that their arithmetic average equals the average of this 

assumed profile along the traverse path.  

Rectangular Duct Traverse 

Figure 2 illustrates a Log-T traverse across a rectangular duct with 𝑗 = 5 points. In each outer region, a single 

measurement point 𝑋outer is located such that its value equals the mean of the logarithmic function 

𝑓(𝑋) =  𝐶1 +  𝐶2 ln(𝑋), where 𝑋 = 𝑥/𝑊, 𝑊 is channel width and the coefficients 𝐶1 and 𝐶2 can take any value. This 

point is calculated by setting 𝐶1 = 0, 𝐶2 = 1, and solving the equation 

 ln(𝑋outer)
1

𝑗
= ∫ ln(𝑋) d𝑋

1
𝑗

0

 (11) 

where the non-dimensional width of the outer region is 1/𝑗. Thus, one outer measurement point is at 

 𝑋outer,1 = 𝑗 exp [ 
ln (

1
𝑗

) − 1

𝑗
] (12) 

and the other outer point is 𝑋outer,2 = 1 − 𝑋outer,1. These points remain valid for any values of 𝐶1 and 𝐶2. 

In the core region, Chebyshev* quadrature is applied to calculate the average value of the assumed polynomial 

velocity profile. Chebyshev quadrature is a method of numerically integrating a polynomial function, 𝑓(𝑥) = ∑ 𝐶𝑖𝑥
𝑖𝑝

𝑖=1 , 

based on its values at a small number of points at particular locations,  𝑥Cheb.  The  standard  formula,  defined  for  the 

 
* There are a variety of transliterations of the original Russian name from Cyrillic script to Latin script. 



 

 

 

Figure 2 Illustration of the Log-T rule for a five-point traverse of a rectangular duct, as described in Equations 12 and 14. 
The square markers indicate the measured point velocities and the solid grey line is the assumed velocity profile. 

interval −1 < 𝑥 < 1, is  

 ∫ 𝑓(𝑥) d𝑥 =
2

𝑛
∑ 𝑓(𝑥Cheb,𝑖)

𝑘

𝑖=1

1

−1

+ 𝐸 (13) 

where 𝐸 is the error term (Chebyshev 1874, Hildebrand 1956). The method is exact (i.e., the error term 𝐸 is zero) for 

polynomials of degree 𝑘 when 𝑘 is odd, and of degree 𝑘 + 1 when 𝑘 is even. The series of points 𝑥Cheb,𝑖 are listed for 

2 ≤ 𝑘 ≤ 6 in Table 1. Proofs of the accuracy of Equation 13 and methods for computing the points in Table 1 have 

been published by Hildebrand (1956) and Gautschi (1976). 

The number of core measurement points for a traverse across a rectangular duct is 𝑘 = 𝑗 − 2. The equation to 

transform the corresponding points in Table 1 from the standard interval −1 < 𝑥Cheb,i < 1 to the core region, 

1/𝑗 <  𝑋𝑖 <  1 −  1/𝑗 is 

 
𝑋𝑖 = (1 + 𝑥Cheb,𝑖) (

1

2
−

1

𝑗
) +

1

𝑗
 (14) 

Figure 2 shows how the three core points (𝑘 = 3) are defined for a five-point traverse (𝑗 = 5). The standard 

interval for Chebyshev quadrature is indicated by the horizontal axis at the top of the plot, and corresponds to the core 

region, 1/5 <  𝑋 < (1 − 1/5), along the horizontal axis at the bottom of the plot. Equation 14 is used to transform the 

Chebyshev points from 𝑥Cheb,𝑖 = {0, ±0.707} (Table 1) to values of 𝑋 of 0.288, 0.5 and 0.712. Because 𝑘 is odd, the 

velocity profile is assumed to have the form of any polynomial of degree 𝑘 ≤ 3.  

 

 

Table 1.   Points for Chebyshev Quadrature (Hildebrand 1956). 

Number of Points, 𝒌 Chebyshev Points, 𝒙𝐂𝐡𝐞𝐛,𝒊  

2 ±0.577350 
3 0;    ±0.707107 
4 ±0.187592;    ±0.794654 
5 0;    ±0.374541;    ±0.832497 
6 ±0.266635;    ±0.422519;    ±0.866247 



Round Duct Traverse 

For a round duct, the outer region is an annulus of area 𝐴outer = 𝐴/𝑗, where 𝐴 is the total cross-sectional area and 𝑗 is 

the number of velocity measurement points per radius. Thus, the boundary between the outer and core regions is at the 

non-dimensional radius 𝜌core = 𝑅core/𝑅 = √1 − 1/𝑗, where 𝑅 is the duct radius. The velocity profile in this region is 

assumed to be logarithmic and is measured at the radial location which corresponds to the area-weighted average of a 

logarithmic profile (Equations 8 and 9). 

In the core region, the velocity profile is assumed to have the form of a polynomial equation, and the remaining 

𝑘 = 𝑗 − 1 measurement points are determined using Chebyshev quadrature. Noting that the local annular area is 

proportional to radius squared, the measurement points in the core region are determined by transforming the 

Chebyshev quadrature points from their original interval −1 < 𝑥Cheb,𝑖 < 1 (Table 1) to the interval 0 < 𝜌𝑖
2 < 𝜌core

2 , 

yielding: 

 
𝜌𝑖 = √

1

2
(1 −

1

𝑗
) (1 + 𝑥Cheb,𝑖) (15) 

The full series of radial measurement points in the core and annular regions can be recast in terms of non-

dimensional wall distance using the transformation 𝑦𝑖/𝐷 = (1 − 𝜌𝑖)/2, where 𝐷 is duct diameter. 

Discussion 

Interesting Features of Chebyshev Quadrature. An example is presented to illustrate the rather remarkable ability 

of Chebyshev quadrature to accurately integrate polynomial curves of degree up to 𝑘 + 1 with only a few points. Four 

somewhat arbitrary polynomial functions of increasing degree are defined in Table 2. The polynomial degree is listed in 

terms of 𝑘 alongside integral solutions by the conventional, analytical approach and by Chebyshev quadrature for 𝑘 =  2 

points (see Figure 3). As expected, the numerical method is perfectly accurate for the first three polynomials and 

incorrect for the fourth case, where the polynomial degree (𝑝 = 4) exceeds 𝑘 + 1 = 3. While this feature of Chebyshev 

quadrature may be surprising at first, it is analogous to evaluating the integral of a straight line (a polynomial of degree 

one) based on its value at only one point (its midpoint). It is easy to see that any straight line passing through the point 

(0, 2) in Figure 3 will have an integral of 4.0, regardless of its slope.  

A defining characteristic of Chebyshev quadrature is that each function evaluation, 𝑓(𝑥Cheb), has an equal weight 

and thus an arithmetic average is valid. The function evaluations are actually weighted by interval width, corresponding 

to the unequal distribution of sampling points. One practical benefit of this feature is that any errors in velocity 

measurement would not be exacerbated (by weighting coefficients). This feature may also have been particularly 

desirable prior to the digital age, as fewer calculation steps are involved relative to weighted integration methods such 

as Gaussian quadrature and Simpson’s Rule. It may now be worthwhile reconsidering the use of weighted integration 

rules as they may be more economical in practice. 

 

Table 2.   Definitions and Integrals of Polynomials of Increasing Degree 

Polynomial Degree, 𝒑 Analytical Solution Chebyshev Quadrature (𝒌 = 𝟐) 

𝑃1 = 𝑥 + 2 𝑝 = 𝑘 − 1 = 1 4 4 

𝑃2 = −𝑥2 + 𝑥 + 2 𝑝 = 𝑘 = 2 3
1

3
  3.333̇ 

𝑃3 = −2𝑥3 − 𝑥2 + 𝑥 + 2 𝑝 = 𝑘 + 1 = 3 3
1

3
  3.333̇ 

𝑃4 = 𝑥4 − 2𝑥3 − 𝑥2 + 𝑥 + 2 𝑝 = 𝑘 + 2 = 4 3
11

15
= 3.733̇  3.555̇ 



 

 

 

Figure 3 Plots of polynomials of increasing degree, 1 ≤ 𝑝 ≤ 4. The Chebyshev quadrature points, 𝑥Cheb,𝑖, for 𝑘 =  2 points 
are indicated by the vertical dash-dot lines.  

Assumed Velocity Profile. The derivations above show that the velocity profile assumed by the Log-Tchebycheff rule 

features logarithmic regions at the walls and a polynomial region in the core flow. The velocity profile in the core flow 

can take the form of any polynomial equation up to degree 𝑘 (for an odd number of core points) or 𝑘 + 1 (for an even 

number of core points). Therefore, the Log-Tchebycheff rule can be expected to perform quite well for a broad range 

of smooth velocity profiles, and it is likely to be more broadly applicable than the Log-Linear rule (in round and 

rectangular ducts). The Log-Tchebycheff rule would not work so well for profiles with a sudden velocity change, for 

example in regions with flow separation or recirculation, but this limitation also applies to the Log-Linear and Equal 

Area rules. 

 

CONCLUSION 

This paper has explained how the locations of velocity measurement points are calculated for the Equal Area, 

Log-Linear and Log-Tchebycheff rules, and in doing so has also revealed the corresponding assumed velocity profiles. 

Furthermore, we can now provide some tentative responses to the series of questions posed in the Introduction: 

1. The Equal Area rule should be no less accurate for a circular duct than it is for a rectangular duct, even 

though it is not prescribed for circular ducts in ASHRAE 111 (ASHRAE 2017). 

2. An unweighted log-linear rule with an arbitrary number of measurement points could be easily derived for a 

rectangular duct following the approach presented above. Whether it is worthwhile is another question, given 

the effectiveness of the Log-Tchebycheff rule in rectangular ducts. 

3. The Log-Linear measurement points can be calculated to machine precision using the formulas derived in 

this paper. The precision of the Log-Tchebycheff points is limited to the precision of the Chebyshev points 

in Table 1. These could be calculated with greater precision following any of the methods described by 

Gautschi (1976). 

Although Questions 4 and 5 are not resolved in this paper, a good starting point is provided for further research. 

 



NOMENCLATURE 

𝑎 = Intermediate variable 𝑢 = Longitudinal velocity 

𝑏 = Intermediate variable 𝑥 = Distance across rectangular duct 

𝑐 = Intercept of a straight-line function 𝑦 = Distance from wall of round duct 

𝑓 = Indicates a function 𝐴 = Cross-sectional area 

𝑔 = Indicates a function 𝐶 = Arbitrary coefficient 

ℎ = Slope of a straight line 𝐷 = Diameter of round duct 

𝑖 = Index for a series of points 𝐸 = Error term 

𝑗 = Number of points per duct radius/half-width 𝑅 = Radius of round duct 

𝑘 = Number of Chebyshev points 𝑆 = Half-width of rectangular duct 

𝑚 = Interval or subregion index 𝑊 = Duct width 

𝑛 = Number of intervals or subregions 𝑋 = Non-dimensional distance across rectangular duct 

𝑝 = Degree of a polynomial equation 𝜖 = A very small number, e.g., 10−6 

𝑟 = Radial coordinate 𝜌 = Nondimensional radius 

𝑠 = Distance coordinate   
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